Genericity, Randomness, and Polynomial-Time Approximations
نویسنده
چکیده
Polynomial-time safe and unsafe approximations for intractable sets were introduced by Meyer and Paterson [Technical Report TM-126, Laboratory for Computer Science, MIT, Cambridge, MA, 1979] and Yesha [SIAM J. Comput., 12 (1983), pp. 411–425], respectively. The question of which sets have optimal safe and unsafe approximations has been investigated extensively. Duris and Rolim [Lecture Notes in Comput. Sci. 841, Springer-Verlag, Berlin, New York, 1994, pp. 38–51] and Ambos-Spies [Proc. 22nd ICALP, Springer-Verlag, Berlin, New York, 1995, pp. 384–392] showed that the existence of optimal polynomial-time approximations for the safe and unsafe cases is independent. Using the law of the iterated logarithm for p-random sequences (which has been recently proven in [Proc. 11th Conf. Computational Complexity, IEEE Computer Society Press, Piscataway, NJ, 1996, pp. 180–189]), we extend this observation by showing that both the class of polynomial-time ∆-levelable sets and the class of sets which have optimal polynomial-time unsafe approximations have p-measure 0. Hence typical sets in E (in the sense of p-measure) do not have optimal polynomial-time unsafe approximations. We will also establish the relationship between resource bounded genericity concepts and the polynomial-time safe and unsafe approximation concepts.
منابع مشابه
Effective genericity and differentiability
We prove that a real x is 1-generic if and only if every differentiable computable function has continuous derivative at x . This provides a counterpart to recent results connecting effective notions of randomness with differentiability. We also consider multiply differentiable computable functions and polynomial time computable functions. 2010 Mathematics Subject Classification 03E15; 03F60 (p...
متن کاملCdmtcs Research Report Series Randomness, Stochasticity and Approximations Randomness, Stochasticity and Approximations
Polynomial time unsafe approximations for intractable sets were introduced by Meyer and Paterson [9] and Yesha [19] respectively. The question of which sets have optimal unsafe approximations has been investigated extensively, see, e.g., [1, 5, 15, 16]. Recently, Wang [15, 16] showed that polynomial time random sets are neither optimally unsafe approximable nor -levelable. In this paper, we wil...
متن کاملLowness for Weak Genericity and Randomness
We prove that lowness for weak genericity is equivalent to semicomputable traceability which is strictly between hyperimmune-freeness and computable traceability. We also show that semi-computable traceability implies lowness for weak randomness. These results refute a conjecture raised by several people.
متن کاملRelativizations of Randomness and Genericity Notions
A set A is a base for Schnorr randomness if it is Turing reducible to a set R which is Schnorr random relative to A, and the notion of a base for weak 1-genericity can be defined similarly. We show that A is a base for Schnorr randomness if and only if A is a base for weak 1-genericity if and only if the halting set K is not Turing reducible to A. Furthermore, we define a set A to be high for S...
متن کاملGeneralized Vershik’s Theorem and Generic Metric Structures
We compare three notions of genericity of separable metric structures. Our analysis provides a general model theoretic technique of showing that structures are generic in discriptive set theoretic (topological) sense and in measure theoretic sense. In particular, it gives a new perspective on Vershik’s theorems on genericity and randomness of Urysohn’s space among separable metric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 1998